Diabetes Predictor Using Machine Learning

diabetes predictor form and results



DISCLAIMER: This program is made for demonstration and
entertainment purposes, it is NOT a real medical diabetes predictor.



Preview Video:



I have implemented a small diabetes predictor from data of more than 768 female patients, I have taken the data from the web:

https://www.kaggle.com/uciml/pima-indians-diabetes-database/data
It is a database of diabetes patients from India.


The algorithm that I have implemented uses Machine Learning, specifically the K-Neighbors technique.

At the time of this writing, there is a data set of 768 women patients, this is the summary of the data:


Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
count 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000
mean 3.845052 120.894531 69.105469 20.536458 79.799479 31.992578 0.471876 33.240885 0.348958
std 3.369578 31.972618 19.355807 15.952218 115.244002 7.884160 0.331329 11.760232 0.476951
min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.078000 21.000000 0.000000
max 17.000000 199.000000 122.000000 99.000000 846.000000 67.100000 2.420000 81.000000 1.000000



Download the complete source code at:

https://github.com/jgascon/diabetes_predictor_machine_learning

It requires a Linux/Docker machine, Python and various dependencies, read the README for more details. It also has a unit test script.


Instructions

It works as follows, I have made a web form in which you have to fill out the following data:

diabetes predictor form

Once the form is filled in, press Submit and the machine learning algorithm will calculate a prediction, in this way it will indicate if the patient is prone to having diabetes or not.

You can see that in the following image it appears that the patient is not prone to diabetes.



diabetes predictor results

DISCLAIMER: This program is made for demonstration and
entertainment purposes, it is NOT a real medical diabetes predictor.



See you in the next post!

References:


Jorge Gascon Perez



This web uses cookies propias y de terceros para obtener datos estadísticos de la navegación de nuestros usuarios y mejorar nuestros servicios.
Si acepta o continúa navegando, consideramos que acepta su uso.
Puede obtener más información aquí.