
Modeling and Simulation of a Human Shoulder

for Interactive Medical Applications

Miguel A. Otaduy Carlos Garre Jorge Gascón
Eder Miguel Álvaro G. Pérez Javier S. Zurdo

Universidad Rey Juan Carlos, Madrid

Abstract

Human joints, such as the shoulder, present
intricate connections of anatomical elements
such as bones, muscles, tendons, ligaments,
and fat. The nature and arrangement of the
various structures in the shoulder impose two
main difficulties for interactive simulation: a
large diversity of mechanical properties, rang-
ing from hard bone to soft fat tissue, and
complex contact situations. In this paper, we
present a combination of representations, sim-
ulation methodology, and algorithms, which,
altogether, provide the proper balance be-
tween simulation quality and performance for
interactive medical applications. Unified rep-
resentations for all dynamic objects and their
dynamic state allow us to define coupling con-
straints and contact constraints in a general
way. As a result, all dynamic objects can be
simulated at once in a unified manner. We
show the application of our algorithm to shoul-
der simulation in two medical settings: virtual
arthroscopy and physiotherapy palpation.

1 Introduction

Virtual reality simulators provide medical
practitioners with a non degradable, versatile,
and realistic environment, in which novices
may learn and try as much as desired. There
is a vast amount of examples of medical sim-
ulators, as discussed in various survey pa-
pers [13, 12, 2].

But the true explosion of medical simulators
is still to happen, and one of the major obsta-
cles for this explosion is the difficulty to simu-

late in an interactive yet realistic manner the
internal human anatomical structures. These
anatomical structures present challenges such
as a very diverse mechanical behavior, rang-
ing from hard bone to soft fat tissue, and in-
tricate contact situations. Contact, with its
associated problems of collision detection, col-
lision response, and friction handling, is often
a computational bottleneck and, more impor-
tantly, a task with an unpredictable computa-
tional cost, which severely complicates inter-
active simulation.

In this paper, we present a combination of
representations, simulation methodology, and
algorithms, geared at producing efficient yet
plausible simulation of intricate internal hu-
man anatomy. One of the key ingredients for
our simulation methodology, described in Sec-
tion 3, is the choice of appropriate represen-
tations for dynamics simulation, contact han-
dling, and visualization. A generalized defini-
tion of dynamics representation allows us to
handle the binding of surface representations,
as well as the coupling of anatomical parts, all
in an elegant and unified manner. In Section 4
we discuss a modeling pipeline to produce all
the representations and the coupling. And the
second key ingredient of our methodology, de-
scribed in Section 5, is a contact handling al-
gorithm that accounts in a unified yet efficient
manner for diverse dynamic representations,
their couplings, and contact constraints.

Human joints are one of the situations where
the challenges of biomechanical simulation
arise constantly, therefore we have selected the
shoulder as the target example for demonstrat-
ing our results. Specifically, we show applica-



Figure 1: Layered display of the anatomical parts of the shoulder simulated in our examples.

tion of interactive shoulder simulation to vir-
tual arthroscopy [3] and physiotherapy palpa-
tion [6], as depicted in Fig. 6. With our simu-
lation methodology and carefully selected rep-
resentations, we obtain interactive contact, de-
formations, and even haptic feedback, on intri-
cate situations involving multi-way contact of
several anatomical parts.

2 Related Work

Biomechanical modeling has seen a lot of suc-
cess recently in computer graphics for the sim-
ulation of body parts such as the hand [24],
the neck [11], the face [20], the torso [25, 5], or
the complete upper body [10]. These models
rely on highly detailed discretizations and ge-
ometrically accurate modeling of the anatomy,
which imposes severe restrictions on their ap-
plicability to interactive simulation.

For interactive simulation of deformations,
methods based on the linear co-rotational fi-
nite element formulation [15] are perhaps the
ones that give a best balance between per-
formance, robustness, and measurement-based
parameterization. This last aspect is impor-
tant when the behavior of a model should ap-
proximate the behavior of a real structure.
Linear co-rotational FEM models can be accel-
erated by decoupling the simulation mesh from
the visualization or collision detection mesh,
using embedded meshes [14, 23, 16].

Another important aspect for a biomechan-
ical simulation is contact handling. Two main
approaches exist, penalty methods [1] and
constraint-based methods [7, 18]. Even though

they may have a higher computational cost,
constraint-based methods provide higher ro-
bustness under stability issues. For the case
of rigid bodies, they are used on several open-
source libraries [4, 17]. It is also worth point-
ing out the SOFA open-source library [22],
which, similar to our work, supports soft-
tissue contact. One of the major issues that
our work addresses is the efficient and easy
coupling of objects with various mechanical
properties. This has been addressed for cou-
pling constraints by [21] using binding springs.
We follow a similar approach and solve binding
springs efficiently in a global conjugate gra-
dient solve. Coupling through contact con-
straints is often addressed in the game engine
field, with the runtime creation of contact is-
lands [19].

3 Representations

We use separate representations for the three
main tasks in the simulation, namely, dynam-
ics, collisions, and visualization, which allows
us to treat each task efficiently. The dynam-
ics representation acts as the link between all
three representations, and it completely de-
fines the state of the collision and visualiza-
tion representations. In this section, we de-
scribe the three representations, as well as the
generic data structures and mathematics for
binding them together.

3.1 Dynamics, Collisions, Visualization

In our algorithm, we define a contact object

as the elementary dynamic object with dis-



tinct mechanical properties (e.g., a bone, a lig-
ament, etc.). Its dynamics representation con-
sists of a state vector q and a velocity vector v

that fully define the dynamics of an object. In
the general case, the velocity and state vectors
are related as q̇ = Gv. All contact objects
share a common interface from the software
engineering point-of-view, which allows us to
handle them all in a unified manner in the
simulation algorithm to be described in Sec-
tion 5. For rigid bodies, the state vector q

consists of the position of the center of mass
and a quaternion for the orientation, while the
velocity vector v consists of the linear and an-
gular velocities of the body. For deformable
bodies, we use a linear co-rotational finite ele-
ment formulation [15], with objects discretized
using tetrahedral meshes. Then, the state vec-
tor is formed by the positions of mesh nodes,
and the velocity vector is formed by the veloc-
ities of the nodes.

For collisions and visualization, we represent
each contact object using a collection of trian-
gle meshes. The topology of these meshes is
fixed, and their geometry is fully defined by
the positions of their vertices, which in turn
are defined by the dynamics representation as
we describe next.

3.2 Binding Dynamics and Surfaces

The position of every vertex in a triangle mesh
is computed using a generic point entity. In
essence, a point binds a vertex and a generic
contact object, by a definition of the vertex
position as p = f(q). For rigid bodies, the ver-
tex position is defined as p = c + Rr, where
c and R are the position and orientation of
the rigid body, and r is the position of the
vertex in the body’s local reference system.
For deformable bodies, we assume each sur-
face vertex to be embedded inside a tetrahe-
dron. Then, the vertex position is defined as
p =

∑

4

i=1
wiqi, where the 4 qi values are the

positions of tetrahedral nodes, and the wi are
barycentric coordinates. Full details about the
construction and embedding of the tetrahedral
mesh are given in the next section.

The point entity also relates the velocities of
mesh vertices and the velocity vector of a con-

tact object, by simple differentiation of the po-
sition, ṗ = Jv, with J = ∂p

∂q
G. Each specific

point entity, depending on the type of contact
object it acts on, stores this relationship in a
compact manner. For deformable objects, for
example, J is a sparse matrix where the only
non-zero columns are those due to the tetra-
hedral nodes that affect the surface vertex. It
is important to point out that velocities are
always linearly related.

But one of the main features of our generic
point entity definition is that it allows us to de-
fine forces and constraints on surface vertices
in a unified manner, independently of the type
of contact object. Given the relationship be-
tween the velocity vector and the velocity of
a vertex, J, forces on a contact object can be
computed from surface forces as Fq = JT Fp.
The linear relationship between velocities and
between forces is the classic manipulator Ja-

cobian from robotics.

For visualization purposes, we store mesh
connectivity in the GPU by exploiting buffer
objects. Every time a contact object is mod-
ified, we simply need to send the state vector
q to the GPU.

4 Modeling

In this section, we list the anatomical parts
of the shoulder that we have accounted for in
our simulations, and we describe our model-
ing pipeline to produce the simulation scenario
where the various representations of the differ-
ent parts are integrated.

4.1 Description of Anatomical Parts

The anatomy of the shoulder is full of diverse
parts such as bones, muscles, ligaments, car-
tilages or tendons. The result is a compact
and heterogeneous volume where it is not easy
for unexperienced persons to discern one part
from another. In order to develop useful and
interesting applications, we need to simplify
the anatomical complexity and focus on those
parts that are meaningful for our application.

For example, in the case of arthroscopy,
there are some bulky parts that are not inter-



Id Anatomical part Render CD FEM Couplings

1 Scapula 10224 105 NA 3, 4, 5, 6(x2), 7, 9

2 Humerus 5189 112 NA 2(x2), 3, 4, 5, 7, 8(x2), 11

3 Supraspinatus 1716 86 87 1, 2

4 Infraspinatus 2136 96 129 1, 2

5 Subscapularis 2424 100 158 1, 2

6 Coracoacromial 1632 146 65 1(x2)

7 Coracohumeral 522 60 86 1, 2

8 Transversehumeral 264 28 NA 2(x2)

9 Labrum 636 120 96 1, 10

10 Labrum Tendon 128 128 122 9, 11

11 Biceps Tendon 264 264 NA 2, 10

Table 1: List of anatomical parts simulated in the arthroscopy example, with the number of
triangles of their visualization surface (Render), number of triangles of the collision surface (CD),
number of tetrahedra of the dynamic representation (FEM), and list of couplings to other parts
(indicated by their ids). ‘x2’ means that the coupling with another anatomical part takes place
at two locations. The number of tetrahedra does not apply for rigid bodies.

esting for the surgeon, such as the subacromial
bursa or the deltoid muscle. In Fig. 1, we show
the parts that we have accounted for in our
arthroscopy example. We model the bones,
i.e., the scapula and humerus, as rigid bodies.
Moreover, due to their limited range of mo-
tion, we also model the biceps tendon and the
transversehumeral as rigid bodies. All other
parts are modeled as soft bodies. Table 1 in-
dicates pairs of parts that are coupled using
zero-length coupling springs. Note that some
parts are coupled at two different locations to
the same bone. When a large surface of a soft
body is coupled to a bone, we disable collision
detection between the two objects, since there
is no relative motion between them. We do
this, for example, in the coupling between the
scapula and the labrum.

For physiotherapy palpation, on the other
hand, the criterion for selecting the interesting
parts is almost the opposite as for arthroscopy,
because the practitioner focuses mainly on the
outer anatomical layers. Therefore, for phys-
iotherapy palpation we incorporate the deltoid
muscle.

4.2 Model Creation Pipeline

The input to our pipeline is a set of triangle
meshes that describe the surfaces of the var-

ious anatomical parts. These meshes can be
obtained by scanning real parts with a stan-
dard 3D scanner, or by manual authoring. We
use these meshes as the visualization represen-
tations in our examples.

For collision handling purposes, we apply
standard mesh simplification techniques to ob-
tain low-resolution approximations that can
be efficiently handled interactively. Then, for
the soft-tissue parts, we create the tetrahedral
meshes that define the dynamic representation
by embedding both the visualization and colli-
sion meshes. We start by enclosing the surface
meshes with a bounding box, we subdivide it
regularly to the desired cell resolution, decom-
pose each cubic cell into five tetrahedra, and
finally we eliminate those tetrahedra that do
not intersect the volume enclosed by the visu-
alization and collision meshes. Thanks to the
embedding-based simulation, plausible defor-
mations are possible even with rather coarse
tetrahedral meshes. Fig. 2 shows the visual-
ization, collision, and dynamics meshes for the
coracoacromial ligament. The resolution of all
meshes for the arthroscopy example is listed
in Table 1.

In order to define couplings between a soft
body and a rigid bone, we manually select
tetrahedral nodes of the soft body that should



Figure 2: From left to right, visualization, colli-
sion, and dynamic meshes for the coracoacromial
ligament.

be coupled to the bone, and we set zero-length
binding springs at those nodes. Both end-
points of a binding spring are fully defined by
the state of their corresponding contact ob-
jects, using the point entity defined in Sec-
tion 3.2. For couplings between soft bodies, we
manually select tetrahedral nodes from both
bodies, and set binding springs at those lo-
cations. Nodes from two bodies a and b are
typically not collocated, therefore, one end-
point of the binding spring is defined directly
by the state of a tetrahedral node, while the
other end-point is defined through barycentric
interpolation inside the enclosing tetrahedron
in the other body.

Due to the intricate layout of anatomical
parts, it would be a daunting modeling task
to ensure that all parts are intersection-free
at their undeformed state. Instead of enforc-
ing this, we allow the objects to intersect in
the undeformed state, but we define an ini-
tialization state where they are intersection-
free. We do this by deforming each tetrahe-
dral mesh (and thus the visualization and col-
lision meshes as well) using a cage-based de-
formation technique [9], as depicted in Fig. 3.
In the simulation, the tetrahedral meshes are
then initialized at a deformed state, and as
soon as the simulation starts they move to a
minimum energy situation.

5 Simulation Algorithm

In this section we explain the main features
of the algorithm that allows the simulation,
in a unified yet efficient manner, of complex
anatomical scenarios composed of objects with
diverse mechanical behavior. At the same

Figure 3: Cage-based deformation of the coraco-
humeral ligament to ensure a collision-free initial
state. In blue, the collision meshes. Notice how
in the undeformed state (on the left), the collision

meshes are intersecting.

time, this algorithm handles elegantly cou-
pling and contact constraints, making them
independent of the objects that they act on.

5.1 Implicit Integration of Dynamics

Given state and velocity vectors q and v that
group the state and velocity of all contact ob-
jects in the scene, the dynamics of the simula-
tion are discretized with the ODEs:

Mv̇ = F,

q̇ = Gv,
(1)

where M denotes the mass matrix and F is
the force vector. We numerically integrate
the ODEs using the (implicit) backward Euler
method with linear approximation of forces,
which yields a velocity update

Av = b, with (2)

A = M − ∆t
∂F

∂v
− ∆t

2
G

∂F

∂q
,

b = ∆tF(v0,q0) +

(

M − ∆t
∂F

∂v

)

v0.

Eq. (2) is solved using a Conjugate Gradi-
ent (CG) solver, and the result is the uncon-
strained velocity of the contact objects.

In a simulation with three independent ob-
jects, Eq. (2) can be writen as:





A11 0 0

0 A22 0

0 0 A33









v1

v2

v3



 =





b1

b2

b3



 .

(3)



All non-diagonal terms of A are zero because
there are no couplings (i.e. no forces) act-
ing between different objects in the simulation.
Our algorithm makes use of this fact and uses
the CG solver efficiently, solving Eq. (2) for
each object independently.

5.2 Coupling Islands

For each pair of anatomical structures that are
solidly attached, we define a coupling between
their corresponding contact objects. Our defi-
nition of coupling is general and is able to han-
dle any pair of contact objects. Specifically,
each coupling consists of two general semicou-

plings and, from a software engineering per-
spective, we define different semicoupling im-
plementations based on the types of contact
objects in our simulation.

For each coupling, we set zero-length springs
between the two coupled contact objects, as
shown in Fig. 4. These springs add new forces
to the system, modifying the structure of the
terms in Eq. (2). With coupled objects as in
Fig. 4, the new system structure is:





A11 A12 0

A21 A22 A23

0 A32 A33









v1

v2

v3



 =





b1

b2

b3



 .

(4)
The system is no longer block-diagonal, and
the right-hand side b is also modified. Given
a zero-length spring between two points pa

and pb, the spring force acting on point pa

is Fpa
= −k(pa − pb), and the force acting

on object a is Fqa
= JT

a Fpa
. Off-diagonal

terms in A are due to non-zero derivatives of
the form

∂Fqa

∂qb

= kJT
a

∂Fpb

∂qb

. These derivatives
can be efficiently computed in a unified man-
ner for arbitrary couplings making use of our
point entities defined in Section 3.2.

The solution to the velocity update can no
longer be executed by doing an independent
CG solve for each object. A naïve approach
would then compute one global CG solve for
the complete system, but we optimize this by
identifying sets of objects that are coupled to
form a coupling island. Two contact objects a

and b belong to the same coupling island if and
only if they share at least one coupling. Then,

Figure 4: Example of coupled objects using
springs. Objects (1) and (3) represent rigid bodies,

while object (2) represents a deformable body.

an independent CG solve can be executed for
each coupling island.

Assuming that couplings are not dynami-
cally created or eliminated, we define coupling
islands as a preprocess. In the modeling stage
described in Section 4, we first define the vec-
tor of contact objects, and then a vector of
coupling entities. Once all structures and in-
teractions are defined, we initialize coupling is-
lands with individual contact objects, and we
grow these coupling islands by traversing the
vector of coupling entities.

At runtime, we need to assemble the sys-
tem (A,b) of each coupling island prior to the
CG solve. In order to do this, we first assem-
ble the system matrices and right-hand-sides
of the individual contact objects and coupling
entities, and then we merge them.

5.3 Contact Islands

In order to handle contact efficiently yet ro-
bustly, we follow the constraint-based formu-
lation in [18]. Given a pair of contact points
pa and pb, we define a non-penetration con-
straint as an algebraic inequality g(pa,pb) =
nT (pa − pb) ≥ 0, where n is the contact nor-
mal.

Constraints are then formulated semi-
implicitly and transformed into velocity con-
straints like Java + Jbvb ≥ c, where the Ja-
cobians are computed using the general point
entities described in section Section 3.2. These
velocity constraints, together with Signorini’s
contact condition [7], are added to Eq. (2),
leading to a Mixed Linear Complementarity
Problem (MLCP), where contact forces are ex-
pressed as JT λ. The full MLCP that defines



Figure 5: A contact island composed of two in-
dividual contact objects, i.e., the tools (nc1) and
(nc2), and one coupling island, formed by contact
objects (1), (2) and (3).

the constrained velocities can be expressed as:

Av = J
T
v + b,

0 ≤ λ ⊥ Jv ≥ c. (5)

We solve this MLCP using an iterative
scheme composed of two nested loops, as ex-
plained in [18]. First, a Jacobi iteration over
the velocities defines the outer loop and de-
composes matrix A into its diagonal and lower
and upper triangular parts, A = DA − LA −

UA. With this decomposition, the iterative
MLCP is transformed into its corresponding
LCP:

0 ≤ λ ⊥ Bλ ≥ d, with

B = JDA
−1

J
T
,

d = c − JDA
−1 (b + (LA + UA)v) . (6)

Then, the LCP is solved to compute λ us-
ing the Projected Gauss-Seidel (PGS) method
(which represents the inner loop), and the cur-
rent iteration of the constrained velocity is ob-
tained.

Instead of solving one large MLCP for the
complete scene, we identify contact islands and
formulate and solve one MLCP for each con-
tact island. Two coupling islands belong to the
same contact island if and only if they share at
least one contact constraint. For the example
in Fig. 5, where a single contact island is com-
posed of two individual contact objects and

one coupling island, the system matrix can be
written as

A =





Ac 0 0

0 Anc1 0

0 0 Anc2



 ,

with the submatrix for the coupling island ex-
pressed as

Ac =





A11 A12 0

A21 A22 A23

0 A32 A33



 .

It is important to note that the off-diagonal
terms of matrix A do not have much impact
on the efficiency of the constrained solve, as
opposed to the unconstrained solve discussed
earlier. The reason is that the lower and upper
triangular parts of A affect only the right-hand
side of the LCP, d, as shown in Eq. (6), and
are not visited during the iterations of PGS.

In contrast to the unconstrained update,
the system matrix for each contact island is
not assembled explicitly. Instead, an object-
oriented processing is followed, accessing each
object’s data when required by the iterative
solver. Based on an implementation of con-
tact islands that deals with contact objects di-
rectly, we have extended it to seamlessly deal
with coupling islands. From a software engi-
neering perspective, we achieve this through
abstraction, by ensuring that coupling islands
share the same interface as contact objects.

6 Results

We have executed our experiments on a quad-
core 2.4 GHz PC with 3 GB of memory (al-
though we have only used two cores, for the
visual and haptic loops) and a GeForce 8800
GTS. For haptic rendering, we have used the
method by [8]. All the modeling tasks and the
cage-based deformation have been executed
using Blender 3D, while the real-time render-
ings have been performed with OGRE.

Fig. 6 shows images of the two applications
where we have tested our interactive shoulder
simulator, arthroscopy and physiotherapy pal-
pation. Our arthroscopy example does not in-
clude a realistic portal-based interaction [3],



Figure 6: Interactive simulations in virtual arthroscopy (left) and physiotherapy palpation (right).

but this was not the purpose of our work. In
the palpation application, we simulate two fin-
ger models, one touching external geometry
and another one the internal anatomy. The
finger models are linked through a spring that
models skin stiffness. Please watch the accom-
panying video for dynamic sequences of inten-
sive contact interactions, as well as a tutorial
of the modeling pipeline.

In the arthroscopy example, the scene has
50 contacts at rest-state. During some sam-
ple haptic interactions that we performed, the
average number of contacts was 65, and it
reached a maximum of 153. The complete sim-
ulation runs at an average of 50 fps. Note that
we ensure a 1 kHz haptic update rate thanks
to a multi-rate haptic rendering approach.

7 Discussion and Future Work

The main conclusion that can be extracted
from our results is that our simulation
methodology is successful in achieving inter-
active simulation of complex human joints for
medical applications. Key to this success are
the optimization of representations, and the
efficient handling of couplings and contacts in
the constraint-based dynamics solver.

The approximations that we carry out have
some implications on the accuracy of the sim-
ulation. For example, the couplings between
the various parts are not fully anatomically
correct, and sometimes we partially eliminate

the possibility of muscles to slide on top of
bones. In order to fully simulate the shoul-
der anatomy, we would need to incorporate the
bursa, but this structure produces even more
intensive contact situations that would be dif-
ficult to handle interactively. The fact that our
contact handling is based on iterative solvers
prevents us from guaranteeing a certain mini-
mum frame rate, although we did not see this
to be a problem in practice.

Besides addressing the limitations of our ap-
proximations, there are many possible avenues
for future work. We are working together with
both arthroscopy and physiotherapy experts
to assess the quality of our models and guide
further developments. In arthroscopy, many
medically interesting interactions are related
to tissue cutting and to suture. Therefore,
a fully fleshed arthroscopy simulation would
require interactive simulation of topological
changes and contact with thread models.

Acknowledgments

We would like to thank the anonymous re-
viewers for their helpful comments, Gonzalo
Mora and Beatriz Tierno for clinical advice,
the GMRV team at URJC and the Health-
care team at GMV for discussions. This work
has been funded in part by the Spanish Dept.
of Science and Innovation (projects TIN2009-
07942 and PSE-300000-2009-5).



References

[1] J. Barbič and D. James. Time-critical dis-
tributed contact for 6-DoF haptic render-
ing of adaptively sampled reduced deformable
models. In 2007 ACM SIGGRAPH / Eu-
rographics Symposium on Computer Anima-

tion, pages 171–180, Aug. 2007. 2

[2] C. Basdogan, M. Sedef, M. Harders, and

S. Wesarg. Vr-based simulators for training
in minimally invasive surgery. IEEE Comput.

Graph. Appl., 27(2):54–66, 2007. 1

[3] S. Bayona, M. García, C. Mendoza, and

J. Fernández-Arroyo. Shoulder arthroscopy
training system with force feedback. Pro-
ceedings of Medical Information Visualisa-
tion, pages 71–76, 2006. 1, 6

[4] BULLET. Bullet Physics Library. http://

bulletphysics.org/. 2

[5] P. C. DiLorenzo, V. B. Zordan, and B. L.
Sanders. Laughing out loud: Control for mod-
eling anatomically inspired laughter using au-
dio. ACM Trans. Graph., 27(5):125:1–125:8,

Dec. 2008. 2

[6] M. Dinsmore, N. Langrana, and G. Burdea.
Issues related to real-time simulation of a vir-
tual knee joint palpation. Proceedings of Vir-
tual Reality and Medicine, The Cutting Edge,
pages 16–20, 1994. 1

[7] C. Duriez, F. Dubois, A. Kheddar, and C. An-
driot. Realistic haptic rendering of interacting
deformable objects in virtual environments.
Proc. of IEEE TVCG, 12(1), 2006. 2, 5.3

[8] C. Garre and M. A. Otaduy. Haptic render-
ing of complex deformations through handle-
space force linearization. In Proc. of World
Haptics Conference, mar 2009. 6

[9] P. Joshi, M. Meyer, T. DeRose, B. Green,
and T. Sanocki. Harmonic coordinates for

character articulation. ACM Transactions on
Graphics, 26(3):71:1–71:9, July 2007. 4.2

[10] S.-H. Lee, E. Sifakis, and D. Terzopoulos.
Comprehensive biomechanical modeling and

simulation of the upper body. ACM Trans.
Graph., 28(4):99:1–99:17, Aug. 2009. 2

[11] S.-H. Lee and D. Terzopoulos. Heads up!:
biomechanical modeling and neuromuscular
control of the neck. ACM Trans. Graph,
25(3):1188–1198, July 2006. 2

[12] P. Leskovsky, M. Harders, and G. Szekely.
A web-based repository of surgical simulator

projects. Stud Health Technol Inform, 119,
2006. 1

[13] A. Liu, F. Tendick, K. Cleary, and C. Kauf-

mann. A survey of surgical simulation: ap-
plications, technology, and education. Pres-

ence: Teleoper. Virtual Environ., 12(6):599–
614, 2003. 1

[14] N. Molino, R. Bridson, J. Teran, and R. Fed-
kiw. A crystalline, red green strategy for
meshing highly deformable objects with tetra-
hedra. International Meshing Roundtable,
pages 103–114, 2003. 2

[15] M. Müller and M. Gross. Interactive virtual
materials. Proc. of Graphics Interface, 2004.
2, 3.1

[16] M. Nesme, P. G. Kry, L. Jeřábková, and
F. Faure. Preserving topology and elastic-
ity for embedded deformable models. ACM
Trans. Graph., 28(3):52:1–52:9, July 2009. 2

[17] ODE. Open Dynamics Engine. http://www.

ode.org/. 2

[18] M. A. Otaduy, R. Tamstorf, D. Steinemann,

and M. Gross. Implicit contact handling for
deformable objects. Computer Graphics Fo-

rum, 28(2):559–568, Apr. 2009. 2, 5.3, 5.3

[19] E. G. Parker and J. F. O’Brien. Real-time
deformation and fracture in a game environ-
ment. In 2009 ACM SIGGRAPH / Euro-
graphics Symposium on Computer Anima-
tion, pages 156–166, 2009. 2

[20] E. Sifakis, I. Neverov, and R. Fedkiw. Au-
tomatic determination of facial muscle acti-
vations from sparse motion capture marker
data. ACM Trans. Graph, 24(3):417–425,
Aug. 2005. 2

[21] E. Sifakis, T. Shinar, G. Irving, and R. Fed-
kiw. Hybrid simulation of deformable solids.
In 2007 ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, pages

81–90, Aug. 2007. 2

[22] SOFA. Simulation Open Framework Archi-
tecture. http://www.sofa-framework.org/.
2

[23] J. Spillmann, M. Wagner, and M. Teschner.
Robust tetrahedral meshing of triangle soups.
Proc. Vision, Modeling, Visualization, pages
9–16, 2006. 2

[24] S. Sueda, A. Kaufman, and D. K. Pai. Mus-
culotendon simulation for hand animation.
ACM Trans. Graph., 27(3), Aug. 2008. 2

[25] J. Teran, E. Sifakis, S. S. Blemker, V. Ng-
Thow-Hing, C. Lau, and R. Fedkiw. Creating
and simulating skeletal muscle from the vis-
ible human data set. IEEE Trans. on Visu-

alization and Computer Graphics, 11(3):317–
328, May/June 2005. 2

http://bulletphysics.org/
http://bulletphysics.org/
http://www.ode.org/
http://www.ode.org/
http://www.sofa-framework.org/

	Introduction
	Related Work
	Representations
	Dynamics, Collisions, Visualization
	Binding Dynamics and Surfaces

	Modeling
	Description of Anatomical Parts
	Model Creation Pipeline

	Simulation Algorithm
	Implicit Integration of Dynamics
	Coupling Islands
	Contact Islands

	Results
	Discussion and Future Work

