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Fast Deformation of Volume Data Using Tetrahedral Mesh Rasterization

Jorge Gascon Jose M. Espadero Alvaro G. Perez
URJC Madrid

Rosell Torres Miguel A. Otaduy

Figure 1: On the left, a 3D medical image with the nodes of a tetrahedral mesh overlaid. The next four snapshots show, from left to right,
interactive deformations of a kidney, the heart, and abdominal vessels. The 256×160×122 volume is deformed at 67fps.

Abstract

Many inherently deformable structures, such as human anatomy,
are often represented using a regular volumetric discretization, e.g.,
in medical imaging. While deformation algorithms employ dis-
cretizations that deform themselves along with the material, vi-
sualization algorithms are optimized for regular undeformed dis-
cretizations. In this paper, we propose a method to transform high-
resolution volume data embedded in a deformable tetrahedral mesh.
We cast volume deformation as a problem of tetrahedral rasteriza-
tion with 3D texture mapping. Then, the core of our solution to
volume data deformation is a very fast algorithm for tetrahedral
rasterization. We perform rasterization as a massively parallel op-
eration on target voxels, and we minimize the number of voxels to
be handled using a multi-resolution culling approach. Our method
allows the deformation of volume data with over 20 million voxels
at interactive rates.

CR Categories: I.3.3 [Computational Geometry and Object Mod-
eling]: Physically based modeling—;

Keywords: Volume data deformation, tetrahedral rasterization

1 Introduction

Regular 3D grids are a popular way to store dense volumetric data.
They are often used to capture and represent volumetric informa-
tion of anatomy or other biological forms, notably in medical imag-
ing [Sonka 2000]. Volume rendering offers a convenient way to il-
lustrate in a single view the internal structures of solid volumetric
objects stored in regular 3D grids [Rezk-Salama et al. 2008].

Elastic deformations, on the other hand, are typically solved by dis-
cretizing the deformation field on a Lagrangian mesh, i.e., a mesh

that moves and deforms along with the material, as this enables
trivial mass conservation. To deform and manipulate volume data,
e.g., for medical planning applications, the data is typically seg-
mented and meshed, and the deformed data is visualized using sur-
face meshes [Shi and Malik 2000]. As a result, the visualization
of the deformed data misses the full-resolution volumetric detail
present in the original 3D grid.

Instead, we propose a method that takes as input a deformation field
discretized on a tetrahedral mesh, and uses it to warp the origi-
nal volume data into a new 3D grid. Our method is independent
of the technique used to compute the deformation (See [Nealen
et al. 2006] for a survey of deformation techniques). The data in
the resulting grid can be visualized with standard volume render-
ing algorithms to reveal its full volumetric detail. We pose the
problem of warping the volume data as tetrahedral mesh raster-
ization with 3D texture mapping, and the central contribution of
our work is an extremely fast method for tetrahedral rasterization.
As an example, the human torso data in Fig. 1, with 4.99M vox-
els (256× 160× 122), is deformed at 67fps. After a discussion of
related work, in Section 3 we describe a massively parallel 3D im-
age warping approach based on barycentric mappings. To further
accelerate rasterization, we introduce a parallel culling algorithm
described in Section 4. We conclude the paper with a discussion of
performance and results.

2 Related Work

Rasterization of geometric primitives to a grid data structure is a
largely studied problem, as it constitutes a key element of current
GPU rendering algorithms [Fatahalian et al. 2009; Laine and Kar-
ras 2011]. They rasterize triangles into a 2D grid, and there are
mainly two approaches to parallelize the process. One approach is
to parallelize on a triangle basis. Each processor handles one tri-
angle, computes an axis-aligned bounding box (AABB) around the
triangle, and then processes internal pixels testing for inclusion in
the triangle [Liu et al. 2010; Fatahalian et al. 2009]. The second ap-
proach is to parallelize on a tile basis. A first step assigns triangles
to a tile of pixels, and then pixels are processed in parallel testing
the list of triangles [Seiler et al. 2008; Eisenacher and Loop 2010].

Our approach for 3D rasterization of tetrahedra combines ideas
from these two approaches. We parallelize at the voxel level, but



we produce candidate voxels based on the AABB of the rendered
tetrahedron. In addition, we face different problems than traditional
triangle rasterization algorithms. As opposed to triangle rasteriza-
tion, in our setting the tetrahedral mesh constitutes a partition of
space, hence only one tetrahedron covers each grid point. At the
same time, the 3D AABB of a tetrahedron produces many more
false candidate voxels than the false candidate pixels produced by
the 2D AABB of a triangle.

3D rasterization of tetrahedra has also been studied, although the
currently published algorithms work by traversing scan planes and
scan lines [Rueda et al. 2004]. This approach is difficult to paral-
lelize with effective load balancing, whereas our proposed method
produces extremely uniform workload across processors.

Yet another related problem is the voxelization of triangle meshes.
Current parallel approaches parallelize the voxelization on tiles, and
construct an A-buffer per tile as a first culling approach [Schwarz
and Seidel 2010; Pantaleoni 2011]. Surface voxelization, although
connected to volume voxelization, also suffers different difficulties.
Primitives occupy fewer voxels, but their AABBs produce many
more false candidate voxels.

One of the problems that needs to be solved as part of our algo-
rithm is a tetrahedron-cube intersection test. One possibility is to
extend existing methods for triangle-square intersection [Akenine-
Möller and Aila 2005]. Another possibility is to build on the general
separating axis test for simple convex primitives [Gottschalk et al.
1996]. However, we exploit the fact that, in our problem, cubes
are actually cells of a grid, and we design a faster algorithm that
works in two steps: grid point classification followed by conserva-
tive tetrahedron-cube intersection test.

Our tetrahedral rasterization algorithm is intended as a method for
volume data deformation. Other techniques have also been used
for this purpose, such as deforming planes with semi-transparent
textures that are rendered front to back [Nesme et al. 2010]. In-
stead, we propose a method that deforms the full volume data and
allows the application of volume raycasting. More similar to our ap-
proach is the deformation method of Goksel and Salcudean [2009],
who also map the deformation of a tetrahedral mesh using a tex-
ture mapping approach. However, their method to map deformed
tetrahedra to voxels follows a scanline approach, and their interac-
tive visualizations are limited to 2D images. Yet another possibility
would be to apply volume raycasting on the deformed tetrahedral
mesh [King et al. 2001; Georgii and Westermann 2006], but the res-
olution of the tetrahedral mesh is too low in our case, and rendering
a high-resolution tetrahedral mesh would be very inefficient.

3 3D Grid Warping

The input data to our method is a regular 3D voxel grid G0, where
the voxels store a scalar field c0 (which could be extended to vector
or tensor fields). In addition, the method takes as input a tetrahedral
mesh M0, which may partially or completely embed the grid. Given
a deformed tetrahedral mesh M1, we wish to compute a deformed
scalar field c1 on an output 3D voxel grid G1. We assume that the
deformation field is linearly interpolated inside each tetrahedron.

We propose a massively parallel method to compute the deformed
scalar field c1, by rasterizing the deformed tetrahedra onto the out-
put grid G1, and assigning values of the scalar field as a texture
mapping process. We trivially define the assignment of deformed
scalar values through barycentric mappings inside each tetrahe-
dron. Formally, given a point with barycentric coordinates b inside
a tetrahedron T , and with undeformed (resp. deformed) position
x0 (resp. x1), we define two barycentric mappings: β0 : x0 → b
and β1 : x1 → b. Given matrices X0 and X1 whose columns are

formed respectively by the undeformed and deformed positions of
the nodes of T , and a vector of ones 1, the mappings β0 and β1 are
defined as the linear transformations

b = β0(x0) =

(
X0
1T

)−1( x0
1

)
= B0 x̄0, (1)

b = β1(x1) =

(
X1
1T

)−1( x1
1

)
= B1 x̄1. (2)

Here, x̄ represents a point x in homogeneous coordinates.

In practice, to assign the deformed scalar value of a voxel with po-
sition x1, we simply fetch the scalar value from the input point x0
with the same barycentric coordinates. This operation is formally
defined as c1(x1) = c0(β

−1
0 (β1(x1))). In our results, we have im-

plemented the texture read operation c0(x0) as a trilinear interpola-
tion of voxel values. Note also that x0 and x1 denote point positions
in world coordinates, and they need to be transformed to and from
device coordinates for texture access operations. This transforma-
tion accounts for deformations that change the overall size of the
volume data, as well as anisotropic voxel spacing in the input data.

Next, we describe the massively parallel rasterization of the com-
plete grid. We start with a basic algorithm, and in the next section
we describe the addition of culling for improved efficiency. First,
for each tetrahedron, we compute matrices of barycentric mappings
B−1

0 and B1. We also compute an AABB for each deformed tetra-
hedron. Then, we process all voxels inside the AABB of each de-
formed tetrahedron, and compute their barycentric coordinates b
following Eq. (2). For each voxel, we test if it lies inside its corre-
sponding tetrahedron or not using the barycentric coordinates. If it
does, then we compute and write the deformed scalar value.

The computation of barycentric mappings and the AABBs of tetra-
hedra are executed on the CPU. Processing the voxels, on the other
hand, is remarkably amenable to GPU architectures. Our voxel ras-
terization algorithm is outlined in Algorithm 1. It barely suffers di-
vergence, as the voxels that do not follow the main flow, i.e., those
that lie outside the tetrahedron, are simply discarded. Texture look-
ups are not coalesced, but they enjoy high cache coherence.

Algorithm 1 GPU voxel rasterization algorithm

INPUT: thread id, block id, c0
OUTPUT: c1
corner = GetAABBCorner(block id)
size = GetAABBSize(block id)
x1 = corner + ComputePosInAABB(thread id, size)
B1 = GetB1(block id)
b = B1 x̄1
if IsOutsideTet(b) then

discard thread
end if
B−1

0 = GetB0Inv(block id)
x̄0 = B−1

0 b
c1 = GetTrilinear(c0, x0)

4 Hierarchical Culling

The volume of a tetrahedron is just 1
6 of the volume of a prism de-

fined by one of its corners and the three incident edges. This frac-
tion of volume suggests that most of the voxels inside the AABB
of a tetrahedron fall outside the tetrahedron itself. In fact, we found
that, with the AABB-based rasterization described in the previous



Figure 2: Left: Examples of grid point masks for a triangle
(A,B,C). The green cell can be culled because the barycentric co-
ordinate of A is < 0 for its 4 vertices. Right: In 3D, our culling
algorithm may produce false positives for cells close to an edge of
a tetrahedron, such as the red cell in the figure.

section, only 14.3% of the candidate voxels fall inside their cor-
responding tetrahedron. Next, we describe a hierarchical culling
approach that reduces dramatically the voxels to be rasterized.

4.1 Grid Point Masks

For each tetrahedron in the deformed mesh M1, we define a coarse
grid with a spacing of N voxels. Each coarse cell encloses N3 vox-
els of the output grid G1, and if a cell does not intersect the tetra-
hedron, then its complete batch of enclosed voxels can be culled.
Instead of testing for exact cell-tetrahedron intersection, we com-
pute a spatial classification of coarse grid points, and then apply a
conservative culling of coarse cells.

Based on barycentric coordinates b = ( bA bB bC bD )T for
a tetrahedron (A,B,C,D), we define 8 half-spaces bA < 0, bA > 1,
bB < 0, bB > 1, bC < 0, bC > 1, bD < 0, and bD > 1. Then, for
each coarse grid point, we compute an 8-bit mask where each bit
classifies the point w.r.t. one of the 8 half-spaces.

4.2 Cell Culling

Our culling algorithm is based on the following theorem. Given the
8 half-spaces of a tetrahedron as defined above, and the 8 vertices
of a coarse cell, if there is at least one half-space such that all 8
vertices lie inside, then the tetrahedron and the cell do not intersect.
As a corollary, all voxels inside the cell can be culled and do not
need to be rasterized.

Based on this theorem and the readily available grid point masks,
the culling of cells can be trivially executed as follows. For each
cell, we perform a logical AND operation of the masks of its 8
vertices. The cell can be culled if the value of its mask is not 0.
Fig. 2-left shows examples of point and cell mask computations.

In 2D, cell-triangle culling is exact if all 4 vertices of a cell are
inside the AABB of the triangle. In 3D, cell-tetrahedron culling
is conservative and may produce false positives for cells close to
an edge of the tetrahedron, as shown in Fig. 2-right. However, as
we show in our results, the number of false positives is small in
practice, and we achieve a good trade-off w.r.t. culling cost.

Our algorithm would easily allow additional levels of hierarchical
culling and an octree-based refinement strategy. However, our re-
sults indicate that, with just one level of hierarchical culling, ras-
terization of valid voxels becomes the bottleneck; therefore, more
sophisticated culling would not yield additional speed-up.

Figure 3: Torso model for performance analysis. Left: in its initial
configuration; Right: rotated 45deg around two orthogonal axes.

4.3 Implementation Details

First, we process the coarse grid points of all tetrahedra and com-
pute their masks. Subsequently, we process the cells of all tetrahe-
dra and compute their masks too. Although these two procedures
are highly amenable to GPU computation, we have found that a
multi-core CPU implementation is fast enough and culling is not
a bottleneck compared to rasterization, as we present in our re-
sults. After the computation of grid point masks and cell masks,
we rasterize in parallel on the GPU all voxels of cells that cannot
be culled. Each cell is treated as an AABB, and hence we follow
the procedure already presented in Algorithm 1. In our tests, we
found optimal performance by making the cell size the same as
the CUDA block size. Once culling is executed, we construct on
the CPU look-up tables that map each valid cell, through its cor-
responding CUDA block id, to the AABB’s size and location, and
the barycentric mappings B1 and B−1

0 .

5 Results and Evaluation

We have tested our fast rasterization algorithm on several volu-
metric deformation examples. All examples were executed on a
3.40GHz 8-processor Intel i7 CPU with 32GB of RAM, and a
NVIDIA GeForce GTX 680 GPU with 2GB of RAM. Our paral-
lel GPU rendering algorithm was coded using CUDA. We observed
optimal processor occupancy with a CUDA block size of 512, and
optimal balance between culling and performance trade-off with a
cell size of 8× 8× 8 = 512, i.e., equal to block size. For volume
rendering, we have used VTK [Schroeder et al. 2004].

5.1 Performance Analysis

To evaluate the performance of our algorithm, we have designed
a controlled deformation example, tested under various resolutions
and settings. Fig. 3 shows two snapshots of a volumetric anatom-
ical model, in its upright initial configuration (left), and rotated 45
degrees around two orthogonal axes (right). The model is meshed
with an axis-aligned regular tetrahedral mesh, and the rotation cre-
ates a misalignment of axes and tetrahedral edges, increasing the
volume of AABBs of tetrahedra. We have tested tetrahedral meshes
ranging from 40 to 5000 tetrahedra, and volume data with resolu-
tions ranging from 128×128×128 to 512×512×512.

First, we have evaluated the performance of our rasterization algo-
rithm with no culling, as described in Section 3. Most of the time
spent on rasterization is devoted to the computation of barycen-
tric coordinates for voxels that fail the barycentric coordinate test.
In fact, only 14.3% of the voxels processed in the GPU pass the
barycentric test and are actually updated.

With our culling algorithm described in Section 4, on the other
hand, 51% of the voxels processed in the GPU pass the barycentric
test and are actually updated. The total rasterization time achieves



Figure 4: Animation of swimming carps with raycasted volume visualization. Each carp is represented using a 204×202×512 volume and
deformed using a 35-tetrahedra mesh. Our rasterization algorithm runs at 57.87ms per carp.

a speed-up of up to 1.5×. Fig. 5 shows graphs of total rasterization
time per frame vs. volume data size, with and without culling. The
speed-up becomes larger with larger datasets. For this comparison,
we used a tetrahedral mesh with 1080 tetrahedra.

Our voxel batch culling takes only 7% of the total cost on average,
and culls away 68% of the unnecessary voxels. As described in Sec-
tion 4, we have used a parallel CPU implementation for the compu-
tation of grid point masks and cell masks. On an 8-core machine, it
achieves up to 2.6× speed-up over a single core implementation.

We have also evaluated the influence of the tetrahedral mesh res-
olution on performance, as shown in Fig. 6. The plot shows the
total rasterization time per frame vs. tetrahedral mesh size, with
and without culling, for the rotated configuration shown in Fig. 3.
The data in the plot was collected for a volume with 233M voxels
after the rotation. As expected, with culling, performance tends to
decrease with denser tetrahedral meshes, as more tetrahedra need to
be processed, and the cell resolution reduces the culling efficiency.

5.2 Simulation Examples

Our first two examples show the potential of our technique for an-
imation purposes. Fig. 4 shows 8 carp models swimming, due to a
scripted procedural deformation applied to their embedding tetrahe-
dral meshes. Each carp is modeled using 35 tetrahedra, and the vol-
ume dataset consists of 21M voxels in the undeformed state. Each
carp is rasterized in 57.87ms on average. Fig. 7 shows 6 oranges
falling and rolling on a plane. We have modeled the deformation
using a linear corotational finite element model [Müller and Gross
2004], and we have simulated frictional contact with the plane con-
sidering only collisions of the nodes of the tetrahedral mesh. Each
orange is modeled using 160 tetrahedra, and the volume dataset
consists of 6.3M voxels in the undeformed state. Each orange is
rasterized in 15.64ms on average.
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Figure 5: Evaluation of performance (with and without culling)
vs. volume resolution for the torso model in Fig. 3. We used a
tetrahedral mesh with 1080 tetrahedra.

But, in addition to animation, our work is largely motivated by med-
ical planning applications, with the possibility to provide an interac-
tive volume manipulation and deformation tool. As a test example,
we present the interactive deformation of the torso model in Fig. 1.
Manipulating the original volume data is appealing for medical ap-
plications, as the full detail of the data is still available during the
deformation, and the volume rendering settings can be dynamically
tuned. The example uses a finite element model with 700 tetrahe-
dra, and a volume dataset with 4.99M voxels. The full model is
rasterized in 14.86ms on average. Note that even though the defor-
mations may be localized, we rasterize the full volume to test the
performance of our algorithm.

We have modeled the inhomogeneity of tissue properties using stan-
dard tables to convert opacity values into mechanical parameter val-
ues, and we compute nodal masses and per-element stiffness matri-
ces by integrating per-voxel mechanical parameters. Nevertheless,
the material properties and the actual deformations do not pretend
to appear realistic; we simply demonstrate the performance of our
method and the interaction possibilities.

6 Conclusion

We have presented an algorithm to efficiently deform volumetric
data by rasterizing an embedding tetrahedral mesh. The simplicity
of the method is key for its high performance, as it enables pro-
cessing all target voxels in parallel with very simple operations and
practically no divergence. To further accelerate rasterization, we
apply efficient multi-core CPU culling as a first step.

Our method suffers some limitations, such as the existence of false
positives during culling. However, these false positives do not hurt
performance significantly. Another limitation is the smoothing in-
troduced by trilinear interpolation of input data. More costly filter-
ing approaches would produce higher quality results.
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volume with 233M voxels after the rotation.



Figure 7: Deformable oranges bounce and roll on a plane. Each orange is represented using a 198×199×160 volume and deformed using
a 160-tetrahedra mesh. Our rasterization algorithm runs at 15.64ms per orange on average.

From an applied point of view, our method allows interactive edit-
ing, manipulation, and deformation of dense volume data. Its ap-
plicability could be extended by handling other types of mesh el-
ements and basis functions, such as trilinear interpolation in hexa-
hedra. This extension would require modifications to the mapping
function and the culling algorithm.
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